Ny Ruoter

ADVANCED TREATMENT TECHNOLOGIES DEVELOPED IN NOR-WATER PROJECT

TECNOLOGIAS AVANÇADAS DE TRATAMENTO DESENVOLVIDAS NO PROJETO NOR-WATER

RE ASSOCIATE LABORATORY M LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

VÍTOR J.P. VILAR Final Conference

CETMAR CENTRO TECNOLÓGICO DEL MAR

15th March 2022

EAM

ADVANCED TREATMENT TECHNOLOGIES

- PHOTOCATALYTIC MEMBRANE REACTOR (FILTRATION + OXIDATION)
- TUBE-IN-TUBE MEMBRANE REACTOR (OXIDATION SMART DOSING OF LIQUID OXIDANTS OR CATALYST)
- TUBE-IN-TUBE MEMBRANE REACTOR (OXIDATION SMART DOSING OF OZONE)
- FluHelik PHOTOREACTOR (OXIDATION PHOTOCHEMICAL PROCESSES)

FINAL REMARKS

PARTNERS

U SC UNIVERSIDADE DE SANTIACO DE COMPOSTELA

Centro Interdisciplinar de Investigação Marinha e Ambiental

Ecotoxicity assessment before and after advanced treatments (optimized conditions)

Dissemination / Communication

Advanced treatment of secondary urban wastewaters

using AOPs, Ozonation and Membrane Filtration

Performance evaluation in the removal of 19 CECs

Analytical evaluation (quantification) of the 19 CECs before and after the advanced treatments

ADVISORY BOARD

Grupo Águas de Portugal

 Supply of urban wastewater samples for tests

 \checkmark Installation of a pre-industrial plant at Ave WWTP

FEUP TEAM

ETMAR

VÍTOR VILAR PRINCIPAL RESEARCHER

ANA I. GOMES P POST-DOC

IDO LÚCIO GOMES PhD STUDENT

CARLA SANTOS MASTER STUDENT

3

ADVANCED TREATMENT TECHNOLOGIES

AOP, OZONATION AND MEMBRANE FILTRATION

PHOTOCATALYTIC MEMBRANE REACTOR

FluHelik PHOTOREACTOR

PHOTOCATALYTIC MEMBRANE REACTOR (FILTRATION + OXIDATION)

PMR: FILTRATION + OXIDATION

single-pass flowthrough operation

PMRs are a very promising technology

- \checkmark Photocatalysis with membrane filtration in a single unit (retention and oxidation);
- Enhanced membrane permeability; \checkmark
- Enhanced antifouling membrane properties through \checkmark oxidation of organic molecules;

High CECs Rejection and High Permeate Quality

Concentrate with a Lower Organic Load

CECs are forced towards the membrane surface

PMR: MEMBRANE MODULE

MAXIMUM PRESSURE: 12.5 bar

OUTER BOROSILICATE TUBE

15/03/2022

PRISTINE CERAMIC MEMBRANE

USEFUL LENGTH: 135 mm

Characteristics of Non-Photoactive Membrane						
Substrate	Material: α -Al ₂ O ₃					
	Pore size: d50 = 3 μm					
Membrane	Material: α -Al ₂ O ₃					
	Pore size: d50 = 100 nm					
	Porosity: 40-55%					
	Useful length: 135 mm					
	Effective area: 84 cm ²					

vilar@fe.up.pt

PMR: ILLUMINATION SOURCE

PMR: TESTS SINGLE-PASS FLOW-THROUGH OPERATION

EFFECT OF GRAPHENE/TiO₂ DEPOSITION METHODS - UWW

Chemical Engineering Journal 430 (2022) 132639

PMR: TESTS SINGLE-PASS FLOW-THROUGH OPERATION

EFFECT OF GRAPHENE/TiO₂ DEPOSITION METHODS - UWW

Antifouling Performance

Flux Recovery Ratio (FRR) Relative Flux Reduction Ratio (RFR) Reversible Fouling Ratio (Rr) Irreversible Fouling Ratio (Rir)

Chemical Engineering Journal 430 (2022) 132639

Absence of UVA light							
Higher RFR due to membrane							
fouling							

Ecotoxicity

Effective reduction of toxicity in zebrafish embryos after treatment for both functionalized membranes

Fig. 7. Abnormalities observed in the zebrafish embryo bioassay: Pericardial oedema – black arrow; yolk sac oedema – red arrow at 48 hpf exposition to CECs + real matrix (A); Abnormal notochord formation at 96 hpf exposition to CECs + synthetic matrix (B); normal development at 96 hpf recorded in CECs + real matrix + MA-3 (C), CECs + real matrix + MB-2 (D) and control – synthetic water (E).

TUBE-IN-TUBE MEMBRANE REACTOR (OXIDATION - SMART DOSING OF LIQUID OXIDANTS OR CATALYST)

Apparatus

- The system comprises an inner tubular membrane and an outer quartz tube.
- 4 UVC lamps are located externally to the quartz tube.
- Liquid or gas stream is introduced by the lumen side of the membrane.
- The water is fed tangentially to the inner wall of the quartz tube.

Water Research 191 (2021) 116815 Science of the Total Environment 743 (2020) 140629

-1

14

SELECTED CONTAMINANTS OF EMERGING CONCERN

Contaminants Groups	Emerging Contaminants	Abbreviation	Chemical Composition	Chemical Structure	Contaminants Groups	Emerging Contaminants	Abbreviation	Chemical Composition	Chemical Structure	
Perfluorinated Compounds	Heptafluorobutyric acid	HFBA	C4HF2O2	s, t		Acesulfame	ACK	C4H4KNO4S	-	
	Potassium nanofluoro-1 butanesulfonate	PFBS	C ₄ F ₉ KO ₃ S	×	Artifical Sweeteners	Saccharin	SCH	C7H5NO3S	A.	
	Perfluorooctanoic acid	PFOA	$C_8HF_{15}O_2$	No.	Carbamazepine and Metabolites	Carbamazepine	CBZ	$C_{15}H_{12}N_2O$	dittor -	
	Trifluormethanesulfonic acid	TFMS	CHF ₃ O ₃ S	2		10,11 Carbamazepine- epoxide	CBZ-EPX	$C_{15}H_{12}N_2O_2$	the second s	
Angiotensin II Receptor Blockers	Valsartan	VSTN	$C_{24}H_{29}N_5O_3$	A start	Beta blockers Hormones	Athenolol	ATNL	$C_{14}H_{22}N_2O_3$	State State	
	Irbesartan	ISTN	$C_{25}H_{28}N_6O$	A A A A A A A A A A A A A A A A A A A		Bisoprolol	BSPL	$\mathrm{C_{18}H_{31}NO_{4}}$	it is	
	Losartan	LSTN	C22H22ClKN6O	and the		17-beta-estradiol	E2	$C_{18}H_{24}O_{2}$	+\$\$\$\$	
Flame Retardant	Melamine	MLN	$C_3H_6N_6$	- Pri		17-alpha- ethynylestradiol	EE2	$C_{20}H_{24}O_2$	-14-14-	
Herbicide	Diuron	DRN	$C_9H_{10}C_{12}N_2O$		Non Steroidal Anti- Inflammatory Drugs	Diclofenac	DCF	C ₁₄ H ₁₀ Cl ₂ NNaO ₂	25	
Insect Repellent	DEET	DEET	C ₁₂ H ₁₇ NO	A A	DW - Demineralized Water UWW – Urban Wastewater [CECs] _{each} = 10 µg					

15/03/2022

vilar@fe.up.pt

PHOTOCATALYTIC MEMBRANE (TiO₂ OR Ag₂MoO₄) + PERMEATION OF OXIDANTS (H₂O₂ OR S₂O₈²⁻)

✓ Acidification pH 5: elimination of inorganic carbon species (CO_3^{2-} , HCO_3^{-})

20% PFOA and 60% - 70% removal DEET and MLN80% removal for 12/19 CECs

Not oxidized SCH, TFMS, PFBS, PFBA

PERMEATION OF FERROUS SOLUTION

UF membrane - Permeation Fe²⁺ (2 mg L⁻¹) H₂O₂ or S₂O₈²⁻ (0.3 mM) UVC = 1.7 W; HRT = 6.1 s

> 80% removal for 3/19 CECs

Not oxidized SCH, TFMS, PFBS, PFBA

TUBE-IN-TUBE MEMBRANE REACTOR (OXIDATION - SMART DOSING OF OZONE)

OZONE MEMBRANE CONTACTOR

Bubble size distribution

The O_3 is rapidly driven into the water through "virtually" unlimited number of O_3 addition points along the membrane length.

OZONE MEMBRANE CONTACTOR: CECs removal and disinfection from UWW

PHOTOREACTOR FluHelik (ONGOING WORK)

PHOTOREACTOR: FluHelik

LAB-SCALE

PILOT-SCALE

PHOTOREACTOR: FluHelik

PRE-INDUSTRIAL

FINAL REMARKS

FINAL REMARKS

PHOTOCATALYTIC MEMBRANE REACTOR FOR CONCURRENT FILTRATION AND OXIDATION

PHOTOCATALYTIC MEMBRANE REACTOR FOR SMART DOSING OF OXIDANTS AND CATALYST

- Oxidant-catalyst/water contactor, was successfully applied for the synergetic activation of H₂O₂ or S₂O₈²⁻ by energy (UVC photolysis), chemical electron transfer (TiO₂-P25 or Ag₂MoO₄ photocatalysis) and chemical interaction with TiO₂-P25 or Ag₂MoO₄ nanoparticles
- O₃-catalyst/water contactor, was successfully applied for CECs removal and disinfection of secondary UWW

FLUHELIK PHOTOREACTOR: SIMPLE AND COMPACT TECHNOLOGICAL SOLUTION FOR SCALING-UP

• Ongoing work: pre-industrial scale with 4 FluHelik photoreactors coupled in series installed at a WWTP

ACKNOWLEDGMENTS

Univ. do Porto (Coordinador)

SRE

CIIMAR (Centro Interdisciplinar de USC Investigação Marinha e Ambiental), Universidade de Santiago de Compostela

LICE ASSOCIATE LABORATORY IN CHEMICAL ENGINEERING

Laboratório Associado LSRE – LCM

(Laboratório de Processos de Separação e Reação - Laboratório de

Catálise e Materiais), Univ. do Porto

CONFEDERACIÓ HIDROGRÁFICA DEL MIÑO-SIL

Confederación Hidrográfica del

Miño-Sil, CHMS

J. PORTO LABORATORY OF SEPARATION AND REACTION ENGINEERING FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

INTECMAR Instituto Tecnolóxico para o Control do Medio Mariño de Galicia

CETMAR Centro Tecnológico del Mar Fundación CETMAR

APA, IP - ARH do Norte (Agência Portuguesa do Ambiente, IP - Administração da Região Hidrográfica do Norte)

Águas do Norte

augasdegalicia

Augas de Galicia

ASSOCIATE LABORATORY

ABORATORY OF CATALYSIS AND MATERIALS

CM - Viana do Castelo - CMIA Câmara Municipal de Viana do Castelo -Centro de Monitorização e Interpretação Ambiental

Aauamuseu

Con la colaboración de

ANABAM Asociación Naturalista "Baixo Miño"

CMVNC-Aquamuseu Câmara Municipal de Vila Nova de Cerveira -Aquamuseu do Rio Minho

UNTA DE GALICIA ONSELLERÍA DE SANIDADE rección Xeral de Saúde Pública

Dirección Xeral de Saúde Pública. Conselleria de Sanidade (Xunta de Galicia)

15/03/2022